If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81^2+b^2=225^2
We move all terms to the left:
81^2+b^2-(225^2)=0
We add all the numbers together, and all the variables
b^2-44064=0
a = 1; b = 0; c = -44064;
Δ = b2-4ac
Δ = 02-4·1·(-44064)
Δ = 176256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176256}=\sqrt{5184*34}=\sqrt{5184}*\sqrt{34}=72\sqrt{34}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{34}}{2*1}=\frac{0-72\sqrt{34}}{2} =-\frac{72\sqrt{34}}{2} =-36\sqrt{34} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{34}}{2*1}=\frac{0+72\sqrt{34}}{2} =\frac{72\sqrt{34}}{2} =36\sqrt{34} $
| 55.25=0.85=c | | x=150+.85x | | 52=x+5 | | -4{3x-6}=48 | | 43=x-9 | | x/(-5)=9 | | h=8-9 | | 3x+6=9x+114 | | d/5-12=2 | | 47=x+5 | | 4x+.08=2× | | 9-(1/3)=x | | -3/20h=15 | | 15/33=m/23 | | 2+5=t | | 2n+(4n-5)=13 | | 280=29n | | 25x+1+13x=180 | | x-2.57=3.29 | | f=-6+4 | | x+9=x+9=5x-11 | | x÷7+7=-8 | | -4/9y=-24 | | -5n+3=9-3n | | 4qq=12 | | 1/2x+3=5/4-7 | | -2=-4x-2(-4x-13) | | -5=-14=z | | 4x+46°=90 | | -6(2-5x)-3(7+7x)-9x=10 | | 2+8(7+x)=72 | | 2x8(7+x)=82 |